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Abstract. The quasiperiodic Fibonacci chain can be obtained by finite displacements from
a periodic chain if one introduces ordered defects that are similar to discommensurations in
incommensurate crystal phases. It is shown that the chain with discommensurations can also be
constructed by means of a substitution rule having the Pisot property. In superspace the defect
structare is a superstructure for the two-dimensional array that corresponds to the Fibonacei
chain.

1. Introduction

Both in experiment (Spaepen er af 1990) and in theory (Kramer 19835, Janssen 1991,
Coddens and Launois 1991, Mosseri 1993) periodic structures that resemble quasicrystals,
the so-called approximants, have been studied. Transitions between them may occur via
an intermediate modulated quasicrystalline phase (Tanssen 1991, Duneau 1992, Audier er
al 1993, Menguy et al 1993). Mathematically an approximant may be obtained from a
quasicrystal by a deformation, for example a strain, of the higher-dimensional structure
whose intersection with physical space yields the quasicrystal. The kinetics of such a
transformation, however, is more difficult to understand. If one insists on a process via
phason hopping, the frequency of the different tiles remains constant and therefore the
transformation to a periodic structure can only be realized locally. This means that one has
to introduce structoral defects in the periodic structure. We study these defects in a simple
one-dimensional model and show that they are related to the singular words introduced in
(Wen and Wen 1993) for the decomposition of the infinite Fibonacci word.

We start by recalling some elementary properties of the Fibonacei ¢hain and some results
from (Wen and Wen 1993). Then we study the question of what happens to a chain obtained
by a substitution rule (replacing the letters (or intervals) in the chain by words). It will be
shown that the new chain can be obtained by a substitution rule as well. Then we apply
this resolt to study the structure and Fourier transform of the periodic chain with defects
obtained by finite displacements from the Fibonacci chain.

Let w = wjwa... be an infinite sequence of letters a or b, ie. w; € {a,b}). Let
Sp(w) '= 8§, = wijwa...w, be the word composed of the first n letters of w. We write
@y = [, |, for the number of letters a in S,, and &, = [S,[p. Let £,, £, € RT be the lengths
of two intervals with £, 5% £,. Consider the one-dimensional chain {x,} defined by
£y ifw,=a

€p ifw,=6.

xp=0 Xp = Xn-1 ={ (1
§ On leave of absence from Department of Mathematics, Withan University, Wuhan, People’s Republic of China,
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1692 ZhY Wen et al
Thus x, = @£, 4 bnlp. If the limit a, /7 exists, we can define an average length (or inverse
density) A:

X a b
o= By =y = pala + ey = A (2)
n n n

From the sequence {x,} one gets a sequence {u,} (the modulation sequence) by

o Xn— nA N . 3
= L 3)
From (1)—(3) and the relation u, + up = 1 Tollows
Ha
Up = Qn — Rily = Qnfbp — Dplla = Wp (an - bn;‘;) . (4)

Notice from (4) that:

(1} u, is independent of the choice of £, and ¢;;

(2) if p,/pp = 1 the sequence obtained by replacing « by 1 and & by & is equivalent to
the geometric embedding model of (Luck ez al 1993);

(3) the asymptotic properties of u, are completely determined by i, and the rate with which
ay/n tends to f,.

Let x = x3, X3, ... be a sequence over the alphabet § = (a, b}, such that the frequencies
fy and py of @ and b in x exist. Consider then a substitution  given by t{a) = A and
t(b) = B, where A and B are words in §*. With o = 4|, B = |Als, ¥ = |Bls and
§ = |B|, we get the substitution matrix

Y B 4
m=(57) )

If we apply 7 to x we get another sequence over {a, &}

y=tx)=7@)r()...=ny....

Our aim is to compare the properties of x and y. In the sequel we assume that
0 < g <1 and that ¢ + 8+ y + 8 > 0 (otherwise y is not defined).

Proposition 1. Let o = u, /1ep and let vy, vp frequencies of g and b in ¥, v = v, /vp. Then

N ply + Vi v, = Buy + ditp ©)
T (et Pua + (r + s (@ + Bt + (v + S)ptn
o+ y .
= . 7
Bu+é 2
Proof. Notice that
ya=Tlx)r(x)...=cCicz... cj € {A, B} (8)
with
_ A ifxi=a o
1B ifx=b. @)
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Let Ay, By be the number of occurences of A and B, respectively, in the first N terms.
Then

Ay N By N
N Ha N Hp -
On the other hand, the number of the letters ¢ and & in the first N blocks of A and B are
aAy + By and SAx + 8 By, respectively. Therefore,

v = lim Ay + ¥ By _ Cfbe + Y ibp (10)
¢ T s (@t BAN T (Y + OBy (et Bita + (¥ +8)its
From this the other formulae follow immediately. a

Notice that for the fixed point & = (ou + v)/(Bu + &) of the fractional linear
transformation v = (orpt + ¥3/(81 + &) the frequency will not change.

Proposition 2. Let {u,(x)} and {u,(y)} be the modulation sequences of the chains
corresponding to x and y. Then {u,(x)} is bounded if and only if {1,(y)} is bounded.

Praaf. Consider the subsequence {i[v(s,)(¥)}s>1 of the sequence {u,(y)}, where 5, =
X1X2...%x,. Notice that |t($, ). = «a, + yb, and |z(S,)|y = PBa, + 8b,. Putting
e = {{a+ B)pta + (¥ + 8)up)~!, we obtain from (4) and (6)
#1zsl () = c{(@an + yb)(Bira + S16) — (Betn + 8ba) 0ttt + v 16)}

= cf(ed — By ) antts — brpta)} = cled — By )un(x) . (1)

Hence u¢5,)i(¥) and u,(x) differ only by a constant factor which is independent of n. Now
let :

My =max{u_;(A), A =S;.S'2...S|A1} Mpg =max{u,—(B), B=t1t2...l‘|3|} (12
WLy = min{uj(A), A =515 ..54} mp = min{u;(B), B=nht.. .t[3|} .

Then for any # there is an integer & such that |7(S;)| € # < |t(Se+1)|. Thus
min(#a, mp) € 4a(¥) — s (¥) € max(Ma, Meg) .

We obtain the result that {#;¢s,)(¥}}a>1 is bounded if and only if {r,(y)} is bounded.. O

Remark 1. Let A = {Ap}nz1 be a bounded sequence of real numbers. We define the
variation of A as var(A) = sup, A, — inf,A,. )

Then a more detailed analysis leads to the following result.

Let u(x) = {up(x)}np1 and u(y) = {64 (¥}}uz1. Then

Cvar(u(x)) + Mg —my4 ifMA—Q£|A|2MB mA~u|A1$m3
CVHI(M(X))+MA—M|A1(X)—MB ifMA-u|‘4|2MB mA—uiA[)mg
Cvar(u(x)) + Mp —ma +uja(x) My —ug < Mg my—ma < mp
Cvar(u(x)) + Mg — my if Mg —ua S Mp mag—ua 2 mp

where C = (@8 — By)/{{@ + Bibe + (¥ + 8t ).

var(u(y)) =
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Remark 2. By (6) one has, in the case det(‘; Z) #£ 0, that v, v, and v, belong to O(u)\ 0.

If the determinant is equal to zero at least either £ or & is different from zero. Suppose
& £ 0. Then

_euty wbutys Pyutyd vy
Bu+d S(Bu+38y SBu+8 &
and
=Y et
vﬂ_y—i—& vb-..a_l_y v, U, 0 € O
Example I. Let x = x1x3x3 ... be the Fibonacci chain and y = t{x)t{x2)--- = y1»2. ..

with 7(a) = aba and ©(b) = ¢:2b. Then
2 2
Mr=(1 1) p=2 v =% W =1.

The frequencies of this chain are the same as those of the Toeplitz chain which can be
obtained from the substitution @ — ab, b — aa.

Example 2. Again we consider the Fibonacei chain x = x;x;. .., now with a substitution
t{a) = bbb, T(b) = ab. In this case

v=03V5-5/10  wn=03-v3/B+V3 1 =2V/5/3+5)
{01
- (21,
Compare this result with the substitution

o(d) =bbbbb  o(B) =abbbbb M, = (2 ;) .

For this chain the Fourier module is given by
2
Fy = —I-{—Z(A;‘, AT2,..0 AM=1+3/5

where K is the lattice constant. This is a Z-module of infinite rank, also called a limit
quasiperiodic system.

2. Defects and singular words

A Fibonacci chain may successively be approximated in the following way. Let {film>i
be the Fibenacci numbers defined by f; = fu—1 + fu—z Wwith fu) = fo = 1 and
Fo = abaab . .. the unique fixed point of the Fibonacci substitution: o (g) = ab, (b)) = a.
We call the cyclic permutations of a word w its conjugates, and denote the set of these
by C(w). Let £, denote the set of words of length # occuring in F,
Clearly Fu = o™(a) € 2y, It is shown in (Wen and Wen 1993) that actually

Q. = C(F) U (wn}. (13)
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The word w,, is called the singular word of length S~ Let L{w) = (|w|,, lwl|s) denote the
nomber of 2’s and P’s in w. Then

L(w) = (fa-1, fa-2) (14)
if w € C(F,,), and
L{wze) = (fon-1+ 1, for—z — 1), Lwasg1) = (fan — 1, fon + 1). (15)

Now we split the infinite word F,, into words of length f,, from C(F,) and the letter a (if
m odd) or b (for m even) according to the following rule, which we call the periodic
approximation algorithm {of order m). Suppose the first &k lefters have already been
partitioned into words. If XpyiXeta... Xeey, belongs to C(F,) we add this word to the
partitioning, otherwise we add simply xz41.

For example for m = 2 (then F» = aba) the periodic approximation algorithm yields
the splitting

Fyy = (aba)(aba)(baa)(baa)(b)(aba)(aba)(baa) . .. .

Now suppose we code the words from C(F,,) in this splitting by letters X1, X;,... and &
by the letter ¥. We shall prove that the new sequence obtained in this way can be obtained
by a substitution X,,, e.g. for m = 2 we code aba — X1, baa — X, b — ¥ and the coded
sequence X1 X1 XoXoF XX, ... will turn out to be the fixed point of the substitution X
given by

(X)) =X X1 XY 2a(X2) = X1 X1 X XnY () =

To define this substitution we need to find multiples of the Fibonacci numbers which are
one less than another Fibonacci number. A solution to this problem is given by the Lucas
numbers (£,)pz0 defined by

lo=1  £4i=3 =L+l n3l.

Lemma 1. Let (f,) be the Fibonacci numbers, (£,) the Lucas numbers. Then for alln 2 0

o fon + 1= fanaa (16}

Lan fonat +1 = Sfans2 {17
Proof. For the induction proof it is useful to supplement {16} and (17} with

Lontt fane1 = 1 = fanga (18

Lonyr fona — 1= fanta. (19)

Now {16)-(19) are easily checked for n = 0. Suppose (16)—(19) are correct for n. Then
Sagryr1 = fanga + fanss = fansa + fanta + fans

= Lon1 foniz — 1 Hlon fonsr + 1+ L2a fan + 1
= fons1 fantz + £ frnn + 1

=43 fontz + 1.
Similarly (17)~(19) will follow for n+4-1. The lemma follows as well from standard identities
-1 -1)

bp=1"4+(1—-1) = 27 — 1



1696 Zh Y Wen et al

Since L({(F,) = (fm-1, fm—2), there are f,_; words of C(F,) with last letter a
and f,—p words with last letter 5. We denote these sets of words by, respectively,
C(Fpm,a) = {A1, Az, ..., Ag _ } and C(Fq, b). We now consider the case m = 2n even.

Lemma 2. Let A; € C(Fy, ). Then
O'2n+] (AJ) = Aj] Ajz N A}'ghb
where Aj; € C(Fan, a).

Proof.

(1) If u is a suffix of v we write uiv. Since an A; by definition of A; and b0+ (a), one
has b > o2t (A). Clearly, L(4;) = L(F,). Therefore, [c™*1(A))| = [oXH1(F,)| =
| Fiang1] = fant1. By (16) one has fauy1 — 1 = £o, fo,. Hence 02"*1(A;) may be written
as AﬂAjz .. .Ajgzﬂb such that IAjkl = fo.

(2) If there is an index & such that Ay does not belong to C(F,), then by (13} Ajr = wa,.
So one has by (14)

|Ajle = fon—1 — 1. (20)

On the other hand e (A)ls = {Fint1fe = fan. Substracting (16) from (17) in
lemma 1, we obtain

Jan = £2nfan-i1 . (21)

Hence by (20), (21) there will be among the £, words A;; at least an index £, k # k',
such that [Aj¢|s 2 fou— + 1. This is impossible because of (I14). This means that for
any ¢ holds: Aj; € C(Fau).

(3) Now we shall prove furthermore that for any i: A; € C(Fa,a). Assume that
b Ay, for some k. Because of (2) one has L(Aj) = (fan~1, fon-2) and L{Apb™") =
(fan—1, fon—2z— 1)}. Harv Ajuy, aAjkb_I is a factor of F,,. Notice that L(aAjkb—[) =
(fan—1 + 1, fau_a — 1), and this is impossible because of (13) and (14). Thus b Aje_;.
Continuing we find that & > A;. But we have always a » A; from the fact that
o W a) = Fp Foy, 0t () = F3, and a > Fy,, this contradiction leads to the
conelusion that for any i one has av Aj. |

Now we are going to prove the main result which concludes that the splitting of the
chain Fo, described at the beginning of this section can be generated by a substitution rule.
For this, let the alphabet $;, be given by

SZn = {X]v X’Z‘.? . --rth_“ Y}
(the case for m = 2rn+1 odd goes analogously). Recall that by lemma 3, if A; € C(Fy,, a),
then
o AN = AjiAj .. A b 22)
where A;; € C(Fay, a). (Here we put Ay := Fy,.)
Now define a substitution rule: X, : 52, — §3, by
Ezn(Xj)=Xj1Xj2...nghY oY) = X;

where X;; = X, if Aj; = A Let W = Wy W, ... be the unique fixed point of 2, which is
obtained by iterating ., an infinite number of times, starting from X;. So Ta, (W) = W.
Now define another substituetion ¢ : 57 — §* by ¢(X;} = Ay for 1 € j £ €2, and
¢(Y) =b.
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Theorem 1. With the note_ltions as above we have

P(W) = oo - .
Moreover, the splitting in words ¢{Wi)@(Ws)... is equal to the splitting obtained by the
periodic approximation algorithm.

Proof. It is easy to check that ¢ o T, = 02**1 0 ¢ on Sa,, using the definitions. Hence
&0 Ty, = o1 o on S*, which in turn implies that ¢ o (Z2,)F(X1) = c@+D%(A)) for
all k. ’

Notice that (Z,)%(X1) = W and limg_, e o' D¥(A}) = Foo. Hence ¢p(W) = Fi.
To prove the second statement, we only have to check that if there is a b = ¢(¥) in the
splitting induced by ¢(W1)e(Ws).. ., that the block of length 2n which starts with this &
is singular. But this is true, because the word of length 2» following this # ends in an a
by lemma 3. O

Remark. We only proved theorem 1 for m = 2n even, but the case of m odd can be proved
in a similar way. In that case Sz,q1 = {X1, X2, ..., Xp,,.,, ¥} with X; € C(Fony1, b).
Example 3. m=1, C(F\, b) = ab, o(ab) = (ab)a, §; = {X1, Y}. Then

X =XY i =X.
The fixed point of £ 1s X3 ¥ X, X,;¥ ... which is the Fibonacci chain over §;. Because

11
M = (1 0)
onehas v=(u+D/p=pfor p=_1 +«/§)/2.
Example 4. m =2, C(Fy, a) = {aba, b;cza}. Here
o3(aba) = (aba)(aba)(baa)(baa)p = o> (baa) = (aba)(aba)(aba)(baa)b .

Sz = {X], Xz, Y} Then
(X)) = Xy X X XY B2(X2) = X1 X1 X1 XY Z(Y) = X

2 3 1
MZ::(Z 1 0)
1 10

W= Bz(W) = X1X1X2X2YX1X1X2X2YX1X1X1 cea s
Now we fix a block Ay € C(Fa,) and replace each X; (1 € J < fon) bj/ X in theorem 1.

Corollary. Let the substitution rule 8y, : {X, ¥} — {X, ¥}* be defined by
EZn(X) = XthY EZn(Y) =X.

If Z is the unique fixed point of B, and ¢ : (X, Y} — {a, b} is defined by
Y(X) = Az, YY) = b, then ¥ (Z)¥(Z>)... vields a partitioning of F., equal to the
" one obtained from the periodic approximation algorithm where cne replaces each conjugate
of Fo, by A;. Moreover,

£ 1

We only have considered here the case m even. It is easy to show that the conclusion is in
general true, ’



1698 Zh Y Wen et al

Example 5. Take n =1, then C{F,,) = {aba, baa, aab}.
Then Z = X*YX*YX*YX%YX’Y... and e.g. for k = 2, F. is approximated by
(baa)*b(baa)*b(baa)*b(baa)*b(baa)’s .. ..

3. Superspace embedding

The embedding of the quasiperiodic Fibonacci chain consists of atomic surfaces along a path
on a two-dimensional lattice = generated by two vectors e, and e,. The points { 4- jz, with
7 = {+/5 — 1)/2, on the chain correspond to the point ie, + je; on the lattice. The path is
bounded around the eigenspace of the highest eigenvalue (7 + 1) of the substitution matrix.
The closure of the projection of the path on the eigenspace of the other eigenvalue (—1) is
a connected interval, called atomic surface. The approximant corresponding to a periodic
repetition of the word F,; is bounded around the line through f,_;e, + f—2e; and the
origin. This means that one needs more than local reordering in going from the quasiperiodic
structure to its approximant. The transformation remains local if one introduces an extra b
(in case fiu—2/fm—1 < 7T, ie. if m is even) or g (if m is odd) as a defect in the pericdic
chain. The density of these defects is governed by the requirement that the frequencies of
a and b in the defective periodic chain are the same as for the Fibonacci chain, The defect
is introduced if the atomic surface at i(fj,—1€, + fm—€s) does not intersect the physical
space (the eigenspace of the highest eigenvalue). By the corollary to theorem 1 this chain
with defecis is exactly Fo = ¥(Z) and can be obtained by our algorithm in section 2 and,
therefore, by the substitution A — A% B, B — A,

For m even one considers blocks A identical to F,,, and B identical to b. Then the ratio
i of the frequencies of letters a and & is given by

ay _ fw-14w

=T+4+]l=—=——— (24)
H by  fm2An+ By
and this implies for the ratio of frequencies of blocks A and B
I
Y 4 (25)

—BE - Jo1 — (7 'ijl)fm-Z - Tfm=1 — fm-a2 T
This is the highest eigenvalue of the matrix (23}

e 1

M= ( I 0) . (26)
The embedding of the chain of A’s and B’s is given by a path on a two-dimensional lattice
% generated by e, and eg. The physical space is the eigenspace of the largest eigenvalue

A=y, ie. rey +ez.
The basis transformation from e,, e; to €4, ep is given by

7= (3':::; ?) 7

which means that the lattice ¥ is a superlattice for £ with index f,—;. Inside the unit cell
of T there are f,,_; atomic surfaces, which in principle have different lengths (figure 1).
The vertex at position r has lattice coordinates

r 1
o ()

& = Frac [er— n (r - f;;z)] (29)
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-0.7

fBA ABRAR ABAABAREA

Figure 1. The superspace embeddings for the cases m = 2, 3 and m = 4, where A is replaced
by, respectively, aba, abaab and abacbaba, and B by b, 2 and b, respectively. There are
respectively 3, 5 and 8 atomic surfaces, but these combine to, respectively 2, 2 and 5 atomic
surfaces of length greater than unity, The circles indicate the positions r; inside the unit cell.

with respect to a basis of lattice &. These points fall on the atomic surfaces in the unit cell.
For m odd the block B is a and

Ay 1 _ 1
By a (T + I)fm.—z - fm—l B rfm—Z - fm—3 )

Therefore, the mairix M is the same as for the even value m — 1. The matrix T becomes

T = (;::; é) (30)

which implies that the index is f,,—s, the same as for the even value m — 1. Consequently
for the approximants with defects with units F,, as well as for those with units Fa,,
one has f5, ; atomic surfaces in the unit cell. This can be seen as a modulation of the
original quasiperiodic structure. Therefore, such ordered defects in the periodic chain which
give the chain the same incommensurability as the Fibonacci chain can be compared with
discommensurations in incommensurate ¢rystal phases. These discommensurations are just
inserted structure units which make the periodic chain quasiperiodic (or incommensurate). In
superspace this corresponds to a commensurate modulation of the #-dimensional embedding.
The index of the superlattice does not depend on the letter order in the substitution, but the
modulation function does (figure 2).

4. Fourier transform

The Fourier transform of a quasiperiodic system of rank n and dimension d, the intersection
of an n-dimensional pericadic system consisting of (r — d)-dimensional flat objects parallel
to the additional space with the d-dimensional physical space is given by

1 < . .
F(H) = az;e‘”v fﬂ j gfrde (31)
J= .

where £; is the atomic surface at position r;, & =}, £;, s the number of atomic surfaces
in the unit cell and H; the additional component of the reciprocal lattice vector (H, Hy)
that projects on the H in the Fourier module.
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Figure 2. Two examples of superspace embeddings with different letter order, Left: the blocks
are formed by abaab and a, there are 2 atomic surfaces per unit cell, one [{ — +/3, 1] with
respect to (0, 0) and one [—(1 ++/5)/2, (5 — +/5)/2] with respeet to (L1). Right: for blocks
aaabb and a, with also 2 atomic surfaces, here of length 2 + /5 amd 1, respectively, In both
cases the total length of the atomic surfaces is 3 + +/5, which corresponds to an average vertex
distance of (+/3 — 2} times the average distance of the Fibonacci chain ((3+3 — 5)/2). The
variation in the sscond case is larger than in the first one. Broken lines enclose the unit cell
which is represented in figure I by a square.

As we have seen, the number of atomic surfaces in the anit celi is £, for m even and
Sz for m odd. They can be obtained from the lattice corresponding to the substitution
rule, i.e. the lattice generated by

es = K(1, —) ep = K(x, 1) (32)

where K is the lattice constant, and « = A~! for A the eigenvalue of matrix (26) bigger than
unity. For m even the first basis vector is replaced by the path corresponding to the word
Fy, i.e. a path from the origin to e4 = fn—1€4 + fiu—2€s. If the atomic surfaces in 0 and
e4 intersect the physical space, so should the atomic surfaces along this path. Therefore
they extend from —c to 1—e, and |2;[ = 1 for all j. In addition there is the atomic surface
of length o in the origin corresponding to the points which are the left vertices of intervals
of length K. Sometimes, these atomic surfaces may touch each other in such a way that
there are atomic surfaces of length greater than unity. This means that the f, — [ surfaces
of length 1 and the one with length 1+« combine to the f,,—; atomic surfaces mentioned in
the previous section. The latter are of different length (figure 1). Finally the lattice constant
K is chosen in such a way that the lengths of the intervals become 1 and 7.

K =anly+bplp =a, +b,7. (33)

Then the Fourier transform has Fourier module

2

R=a + o)

[h) + Rae] h,haoel (34)

and is given by

1 fr: . ]—Q . 1 B
F(H) = e etfn f fitdr + e A d: 35
( ) fn + [Z 1—a ( )

=1 —
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where

27
H; K(l )[ hlﬂl'l'hg] (36)

and
r; = Gjn+bjaT. . (37)

Here the coefficients are found as follows. If A is replaced by w = xyx3 ... xy,, the prefixes
€, X1, X1X2, ... (Le. S;(w)) contain a; = [S;(w)|. @’s and &; = |S;(w)p b’s The Fourier
module of the penodxc chain with defects contains as submodule the Fourier module of the
Fibonacci chain. Therefore, the chain with defects can be considered as a (commensurately)
modulated Fibonacci chain.

When the lengths of the intervals are not 1 and z, but arbitrary £, and £, the expression
(31) for the Fourier transform can be generalized. The atomic surfaces are generally not
parallel to the additional space, but stay mutually parallel to a line x = gt (¢t € R) such that

G=K(l+af) Ly=K@-p). (38)

The formula (31) then becomes

2

F(H) — é Zciﬂr; f eiH;!+iﬂIdt . (39)
j=1

5. Concluding remarks

We have considered the properties of an infinite word created from a quasipericdic word
like the infinite Fibonacci one by replacing letters by words. In this way one may obtain
words with different frequencies and different rank. The frequencies are related by a
fractional linear transformation. The rank may even become infinite if the fractional linear
transformation is singular. Otherwise the rank remains the same.

A locally rearranged Fibonacel word (i.e. with the same frequencies) consisting of a
quasiperiodic sequence of words can be obtained from a chain resulting from a substitution
rule by replacing the letters in the latter by words. In this way the rearranged chain can
be considered as a modulated Fibonacci chain with discommensurations. The rank remains
two and the Fibonacci Fourier module is & submodule of that of the modulated chain. In
other words the modulation is commensurate with respect to the quasipericdic Fibonacci
chain.

For the example of the Fibonacei chain we have shown that a quasiperiodic chain may
be transformed to a chain that consists of pieces of one of the periodic approximants and
discommensurations. The transformation occurs via finite phason hopping.
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