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Abstract. The quasiperiodic Fibonacci chain can be obtained by finite displacements from 
a periodic chain if one introduces ordered defects that are similar to dismmmnsurations in 
incommensurate crystal phases. It is shown thal the chain with discommensurations can also be 
conshucted by means of a substitution rule having the Pisot property. In superspace the defect 
structure is a superstructure for the two-dimensional a m y  that corresponds to the Fibonacci 
chain. 

1. Introduction 

Both in experiment (Spaepen et al 1990) and in theory (Kramer 1985, Janssen 1991, 
Coddens and Launois 1991, Mosseri 1993) periodic structures that resemble quasicrystals, 
the swcalled approximants, have been studied. Transitions between them may occur via 
an intermediate modulated quasicrystalline phase (Janssen 1991, Duneau 1992, Audier er 
al 1993, Menguy et al 1993). Mathematically an approximant may be obtained from a 
quasicrystal by a deformation, for example a strain, of the higher-dimensional structure 
whose intersection with physical space yields the quasicrystal. The kinetics of such a 
transformation, however, is more difficult to understand. If one insists on a process via 
phason hopping, the frequency of the different tiles remains constant and therefore the 
transformation to a periodic structure can only be realized locally. This means that one has 
to introduce structural defects in the periodic structure. We study these defects in a simple 
one-dimensional model and show that they are related to the singular words introduced in 
(Wen and Wen 1993) for the decomposition of the infinite Fibonacci word. 

We start by recalling some elementary properties of the Fibonacci chain and some results 
from (Wen and Wen 1993). Then we study the question of what happens to a chain obtained 
by a substitution rule (replacing the letters (or intervals) in the chain by words). It will be 
shown that the new chain can be obtained by a substitution rule as well. Then we apply 
this result to study the structure and Fourier transform of the periodic chain with defects 
obtained by finite displacements from the Fibonacci chain. 

Let w = w, w1..  . be an infinite sequence of letters a or 6 ,  i.e. wi E (a. b). Let 
S,(w) := Sn, = wl w2.. . w, be the word composed of the first n letters of w. We write 
a, = ISnla for the number of letters a in S,, and b, = [&lb. Let E a ,  E,, E E+ be the lengths 
of two intervals with e ,  # t b .  Consider the one-dimensional chain {x,) defined by 

i f w , = a  
xg = o  X" -x,-, = [:: i f w , = b .  (1) 

$ On leave of absence from Department of Mathematics, Wuhan University, Wuhan. People's Republic of China. 
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Thus x, = a,& + b.&. If the limit aJn exists, we can define an average length (or inverse 
density) A: 

Zh Y Wen et a1 

From the sequence {x,,} one gets a sequence {u.} (the modulation sequence) by 

From (1)43) and the relation p., + pb = 1 follows 

U, =a,, - npo = anpb - b,,Fa = p b  a,, -bo- ( 3 
Notice from (4) that: 

(1) U, is independent of the choice of la and eb; 

(2) if pu/pb = p the sequence obtained by replacing a by 1 and b by p is equivalent to 
the geometric embedding model of (Luck et a1 1993); 

(3 )  the asymptotic properties of U, are completely determined by pa and the rate with which 
a,, f n tends to pa. 

Let x = X I ,  xz,  . . . be a sequence over the alphabet S = , [ U ,  b} ,  such that the frequencies 
pu and p b  of a and b in x exist. Consider then a substitution r given by <(a) = A and 
r(b) = B,  where A and B are words in S*. With (Y = IAln, B = IAlb, y = IBl. and 
6 = lBlh we get the substitution matrix 

If we apply r to x we get another sequence over {a, b} 

y = T ( X )  = r ( x l ) r ( x z ) .  . . = yty2.. . . 
Our aim is to compare the properties of x and y. In the sequel we assume that 

0 < pa < 1 and that 01 + B + y -+ S > 0 (otherwise y is not defined). 

Proposition I .  Let p = pL./pb and let w,, wh frequencies of a and b in y, w = w u / w b .  Then 

(-5) Vb = BP" + 6LLb a!& + Y P b  w, = 
(a + ,@Pa f (Y f 8)Pb (a f !%Pa f (V f 8)Pb 

Prooj Notice that 

with 

if xj = a 

i f x j = b  
cj = 



Fibonacci chain 1693 

Let AN, BN be the number of occurences of A and B ,  respectively, in the first N terms. 
Then 

On the other hand, the number of the letters a and b in the first N blocks of A and B are 
 AN + yB,v and BAN + ~ B N ,  respectively. Therefore, 

From this the other formulae follow immediately. 0 

Notice that for the fixed point p = (orp + y ) / ( B p  + 6) of the fractional linear 
transformation U = (up + y ) / ( P p  + 6) the frequency will not change. 

Proposition 2. Let {u , (x ) }  and {u,(y)] be the modulation sequences of the chains 
corresponding to x and y. Then (u,(x)} is bounded if and only if {u,(y)] is bounded. 

Proof. Consider the subsequence {ulr(s.)~(y)Jn>l of the sequence (uG(y)], where S. := 
XIXZ ... x.. Notice that lr(.Sn))la = ora, + yb, and Ir(S,)lh = pa, + ab,. Putting 
c = ( (a  +B)pn + ( y  + S)p~l- ' ,  we obtain from (4) and (6) 

Ulz(S,)l(Y) = C { ( a a n  + Ybn)(Bpa + 8Pb)  - (Ban 6bn)(apLo Y p b ) }  

=C{(Or& - B Y ) ( a n P b  - b n W a ) }  = C(a6 - B Y ) U n ( X ) .  (11) 
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Remark 2. By (6) one has, in the case det(: g)  # 0, that U, U. and vb belong to Q(p) \ Q. 
If the determinant is equal to zero at least either B or S is different from zero. Suppose 
6 # 0. Then 

Zh Y Wen et al 

and 

Example I .  
with r(a) = a b a  and r(b) = a2b. Then 

Let x = x lx2x3 . .  . be the Fibonacci chain and y = r(x1)z(x2).  . . = y l y z  

The frequencies of this chain are the same as those of the Toeplitz chain which can be 
obtained from the substitution a + ab, b + aa. 

Example 2. Again we consider the Fibonacci chain x = ~ 1 x 2 . .  ., now with a substitution 
r(a) = bbb, r(b) = a b .  In this case 

Compare this result with the substitution 

~ ( a )  = bbbbb c(b) = abbbbb MO = (: :) 
For this chain the Fourier module is given by 

where K is the lattice constant. This is a %module of infinite rank, also called a limit 
quasiperiodic system. 

2. Defects and singular words 

A Fibonacci chain may successively be approximated in the following way. Let ( fmIm>, 
be the Fibonacci numbers defined by fm = fm-~ t fm-z with f-1 = fo = 1 and 
Fm = abaab .. . the unique fixed point of the Fibonacci substitution: ~ ( a )  = ab, u(b) = a. 

We call the cyclic permytations of a word w its conjugates, and denote the set of these 
by C(w). Let Qn denote theaet of words of length n occuring in F,. 

Clearly Fm = U"@) E Qfm. It is shown in (Wen and Wen 1993) that actually 

Qf* = C(Ffn) U k!Jml. (13) 
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The word w, is called the singular word of length f , .  Let L(w) = (lwlo, Iwlb) denote the 
number of U'S and b's in w. Then 

L ( w )  = ( f m - 1 ,  fm-Z) (14) 
if w E C(F,), and 

L(w7.n) = (fh-1 + 1, f h - z  - 1). L ( W h + l )  = (fh - 1, ful + 1). (15) 
Now we split the infinite word F, into words of length f, from C(F,) and the letter U (if 
m odd) or b (for m even) according to the following rule, which we call the periodic 
approximation algorithm (of order m). Suppose the first k letters have already been 
partitioned into words. If XX+IX~+Z.. . x x + ~ .  belongs to C(FJ we add this word to the 
partitioning, otherwise we add simply XX+I .  

For example for m = 2 (then FZ = aba) the periodic approximation algorithm yields 
the splitting 

F, = (aba)(aba)(baa)(baa)(b)(aba)(aba)(baa) . . . . 
Now suppose we code the words from C(F,) in this splitting by letters XI, Xz, . . . and b 
by the letter Y. We shall prove that the new sequence obtained in this way can be obtained 
by a substitution C,, e.g. form = 2 we code aba + XI, baa + Xz, b + Y and the coded 
sequence XIX~X~XZYXIXZ.. . will turn out to be the fixed point of the substitution Cz 
given by 

CZ(X1) = XlXlXZXZY q x , )  = XlXlXlXZY CZ(Y) = XI. 
To define this substitution we need to find multiples of the Fibonacci numbers which are 
one less than another Fibonacci number. A solution to this problem is given by the Lucas 
numbers ( t&~ defined by 

" 
, eo = 1 el = 3  &+I =e,  +& n 2 1 .  

Lemma 1. Let (f,) be the Fibonacci numbers, (e,) the Lucas numbers. Then for all It > 0 

(16) 
(17) 

ehfzn + 1 = f4n+l  

e h f Z n + I  + 1 = f4n+Z 

Proof. For the induction proof it is useful to supplement (16) and (17) with 

.ezn+lfi"+l - 1 = h I + 3  

ezn+i fZ"+Z - 1 = f4n+4 .  

(18) 
(19) 

Now (16)-(19) are easily checked for n = 0. Suppose (16)-(19) are correct for n.  Then 

f4(n+L)+I = f4n+4 + f4n+3 = f4n+4 + f4n+Z + f4n+I 

=ezn+l.fzn+Z-I+~z.f2n+I + l + ~ z n f h +  1 

= l k + l  fZ"+Z + ~?.nfz.+z + 1 

= ek+3f2.+Z + 1. 
Similarly (17)-(19) will follow for n + l .  The lemma follows as well from standard identities 

r" - (1 - 7)" e. = 5" + (1 - 7)" f" = 2 r -  1 
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Since L(F,) = (f,-~, fm-z), there are fm-l words of C(F,,,) with last letter a 
and fm-z words with last letter b. We denote these, sets of words by, respectively, 
C(F,, a) := ( A I ,  Az,  . . . , A b - , }  and C(F,, b) .  We now consider the case m = 2n even. 

Lemma 2. Let Aj E C(Fa,a). Then 

U>+' (A,) = Ajl Ajz  . . . AjQb 

where Aji E C(Fa, U).  

Proof. 
(1) Ifu isasuffixof U wewr i t eu~v .  SinceabAj bydefinitionofAjandbDub+'(u), one 

has b D U ~ + ' ( A ~ ) .  Clearly, L(Aj)  = L(Fh). Therefore, luail(Aj)l = 1u2"+'(Fzn)l = 
IFdn+lI = &+I. By (16) one has hn+l - 1 = &fa. Hence uL+'(Aj) may be written 
as AjlAjz ... Ajc,b suchthat IAjtl = fa. 

(2) If there is an index k such that Ajt does not belong to C(Fh) ,  then by (13) Ajk = ~ 2 " .  
So one has by (14) 

IAjrla fa-I - 1. (7-0) 

On the other hand lub"(Aj)l. = IF4n+l10 = f4n. Substracting (16) from (17) in 
lemma 1, we obtain 

f4" = ebfb-l  . (21) 

Hence by (20). (21) there will be among the la words Aji at least an index k', k # k', 
such that lAj& > fa-, + 1. This is impossible because of (14). This means that for 
any i holds: Aji E C(Fa). 

(3) Now we shall prove furthermore that for any i: Aji E C(Fb,a). Assume that 
b~ Ajk for some k.  Because of (2) one has L(Ajk) = (fa-!, fk-2) and L(Ajtb-l)  = 

f2-2 - 1). If a D Air-1, nAjwb-' is a factor of Fm. Notice that L(aAjkb-') = 
(fin-] + 1, fZn-2-  l), and this is impossible because of (13) and (14). Thus bs Ajr-1. 
Continuing we find that b D A ~ I .  But we have always a D Ajl from the fact that 
ub+l(a) = F b F b - I ,  ub+'(b) = Fz, and a D F a ,  this contradiction leads to the 

0 

Now we are going to prove the main result which concludes that the splitting of the 
chain Fm described at the beginning of this section can be generated by a substitution rule. 
For this, let the alphabet S a  be given by 

conclusion that for any i one has a b  Aji. 

s, = [ X I ,  x z ,  . . 9 x,,., 9 Y I  
(the case form = 2n+ I odd goes analogously). Recall that by lemma 3 ,  if Aj E C(&, a), 
then 

ub+'(Aj) = A j ]  A j z . .  . Ajchb 

where Aji E C(Fa, a). (Here we put A I  := Fa.) 
Now define a substitution rule: z1a : Sz. + S& by 

C,(Xj)  = XjlXjZ..  . Xj&Y C,(Y) = X I  

where X j i  = X t  if Aji = At.  Let W = Wl Wz . . . be the unique fixed point of which is 
obtained by iterating C a  an infinite number of times, starting from X I .  So &(W) = W .  
Now define another substitution 4 : S& + S' by @ ( X j )  = AI for I 6 j 6 ez. and 
#(Y) = b. 
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Theorem 1. With the notations as above we have 

@ ( W )  = F,. 
Moreover, the splitting in words @(Wl)@(Wz).  . . is equal to the splitting obtained by the 
periodic approximation algorithm. 

Proof. It is easy to check that @ o = U'*+' o @ on S,, using the definitions. Hence 
@ o Eh = ub+I o @ on S&, which in turn implies that @ o (Cz,)k(X~) = U@"+')~(AI) for 
all k. 

Notice that (x~,)~(Xl) + W and limk,,db")k(Al) = F,. Hence @ ( W )  = F,. 
To prove the second statement, we only have to check that if there is a b = @(Y) in the 
splitting induced by @(Wl)@(Wz).  . ., that the block of length 2n which starts with this b 
is singular. But this is true, because the word of len& 2n following this b ends in an a 
by lemma 3. 0 

Remark. We only proved theorem 1 form = 2n even, but the case of m odd can be proved 
 in a similar way. In that case &.+I = {XI, Xz, . . . , Xh,-, , Y) with Xj E C(&+l, b). 

&"le 3. m=l, C(F1, b) =ab, u(ab) = (ab)a, SI = {XI, Y). Then 

&(Y) = XI. 
The fixed point of XI is XI YXIXl Y . . . which is the Fibonacci chain over SI. Because 

Xl(X1) = XIY 

one has v = (fi + l)/p = p for p = (1 + &/2. 

Exumple 4. m = 2, C(F2. a) = [aba, baa). Here 

u3(aba) = (aba)(aba)(baa)(baa)b 

SZ = {XI, XZ, Y). Then 

X,(X,) = XlxlXzxzY C*(XZ) = XlxlXlxzY ZZ(Y) = XI 

u3(baa) = (aba)(aba)(nba)(baa)b 

2 3 1  

1 1 0  
M x 2 = ( 2  1 0 )  

W = W W )  = xlxlx*x*YxIxIxzxzYxIxIxI.. . . 
Now we fix a block A k  E C(Fzo) and replace each Xj (1 < j 6 8%) by X in theorem I .  

Corollary. Let the substitution rule Ezn : {X, Y) + {X, Y]' be defined by 

%,,(Y) = x. 
If Z is the unique fixed point of Ea, and 11 : (X, Y)' + {a, by is defined by 
@(X) = Ak, @(Y) = b, then @(Zl)@(Zz) ... yields a partitioning of F, equal to the 
one obtained from the periodic approximation algorithm where one repl.aces each conjugate 
of F b  by A x .  Moreover, 

Z*"(X) = X(2.Y 

Msz  = ') 
1 0  

We only have considered here the case m even. It is easy to show that the conclusion is in 
general true. 
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Example 5. Take n = 1, then C(Fa) = {aba, ban, aab}. 

(baa)4b(baa)4b(baa)4b(baa)4b(baa)5b.. . . 

Zh Y Wen et a1 

Then Z = X4YX4YX4YX4YX5Y ... and e.g. for k = 2, Fm is approximated by 

3. Superspace embedding 

The embedding of the quasiperiodic Fibonacci chain consists of atomic surfaces along a path 
on a two-dimensional lattice C generated by two vectors e. and eb.  The points i+ j t ,  with 
5 = (4 - 1)/2, on the chain correspond to the point iea + j e b  on the lattice. The path is 
bounded around the eigenspace of the highest eigenvalue (5 + 1) of the substitution matrix. 
The closure of the projection of the path on the eigenspace of the other eigenvalue (-t) is 
a connected interval, called atomic surface. The approximant corresponding to a periodic 
repetition of the word Fm is bounded around the line through fm-lea + fm-2eh and the 
origin. This means that one needs more than local reordering in going from the quasiperiodic 
structure to its approximant. The transformation remains local if one introduces an extra b 
(in case fm-z/fm-l c t, i.e. if m is even) or a (if m is odd) as a defect in the periodic 
chain. The density of these defects is govemed by the requirement that the frequencies of 
a and b in the defective periodic chain are the same as for the Fibonacci chain. The defect 
is introduced if the atomic surface at i(fm-1eu -!- fm-2eb) does not intersect the physical 
space (the eigenspace of the highest eigenvalue). By the corollary to theorem 1 this chain 
with defects is exactly F, = +(Z) and can be obtained by our algorithm in section 2 and, 
therefore, by the substitution A + A‘UB, B + A .  

For m even one considers blocks A identical to Fm and B identical to b. Then the ratio 
fi of the frequencies of letters a and b is given by 

and this implies for the ratio of frequencies of blocks A and B 
1 - - t A N  v = - =  

BN fm-I - (t tlIfm-2 ’ rfm-I- fm-2 ’ 

This is the highest eigenvalue of the matrix (23) 

M = ( e m  1 0  ’) 
The embedding of the chain of A’s and E ’ s  is given by a path on a two-dimensional lattice 
9 generated by eA and eB. The physical space is the eigenspace of the largest eigenvalue 
h = U, i.e. heA + eB. 

The basis transformation from e,, eb to eA, eB is given by 

which means that the lattice % is a superlattice for C with index f m - , .  Inside the unit cell 
of 5 there are fm- ]  atomic surfaces, which in principle have different lengths (figure 1). 
The vertex at position r has lattice coordinates 

= Frac [ 2 25 - I (t - ?)] 
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- - 

c 

? 
P 

RBR RBRRE RBRRBABR 

Figure 1. The superspace embeddings for the oses m = 2 .3  and m = 4, where A is replaced 
by, respectively, aba, abaab and abaababa, and B by b, n and b, respectively. There are 
respectively 3, 5 and 8 atomic surfaces, but these combine to, respectively 2, 2 and 5 atomic 
sufam of length mater than unity. The circles indicate the positions rj inside the unit cell. 

with respect to a basis of lattice 2. These points fall on the atomic surfaces in the unit cell. 
For m odd the block B is a and 

1 - - AN 1 
EN (t + 1 ) f m - z  - fm-l t f m - 2  - f m - 3  . 

v = - =  

Therefore, the matrix M is the same as for the even value m - 1. The matrix T becomes 

T = ( k  ;) 
which implies that the index is fm-2. the same as for the even value m - 1. Consequently 
for the approximants with defects with units Fh as well as for those with units &+I 

one has fa-1 atomic surfaces in the unit cell. This can be seen as a modulation of the 
original quasiperiodic structure. Therefore, such ordered defects in the periodic chain which 
give the chain the same incommensurability as the Fibonacci chain can be compared with 
discommensurations in incommensurate crystal phases. These discommensurations are just 
inserted structure units which make the periodic chain quasiperiodic (or incommensurate). In 
superspace this corresponds to a commensurate modulation of the n-dimensional embedding. 
The index of the superlattice does not depend on the letter order in the substitution, but the 
modulation function does (figure 2). 

4. Fourier transform 

The Fourier transform of a quasiperiodic system of rank n and dimension d, the intersection 
of an n-dimensional periodic system consisting of (n - d)-dimensional flat objects parallel 
to the additional space with the &dimensional physical space is given by 

where Qj is the atomic surface at position rj, Q = Q j ,  s the number of atomic surfaces 
in the unit cell and H, the additional component of the reciprocal lattice vector (H, HI) 
that projects on the H in the Fourier module. 
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m a 8  mass 

Fi- 2. Two examples of supenpace embeddings wiih different letter order. LeR the blocks 
are formed by abnnb and a, there axe 2 atomic surfaces per unit cell, one [I  - d3 11 with 
respect to (0.0) and one [-(I + 3 ) / 2 .  (5 - 43/21 with respn to (44). Right: for blocks 
naabb and a. with also 2 atomic surfaces, here of length 2+ d and I ,  respectively. In both 
e s e s  the total length of the atomic surfaces is 3 +d, which corresponds io an average vertex 
distance of (d - 2) times thir avenge distance of the Fibonacci chain ((33 - 5)/2). The 
variation in the second case is larger hi in the first one. Broken lines enclose. the unit cell 
which is represented in figure 1 by a square. 

As we have seen, the number of atomic surfaces in the unit cell is fm-l form even and 
fm-z for m odd. They can be obtained from the lattice corresponding to the substitution 
rule, i.e. the lattice generated by 

eA = K(1, -a) e B  = K ( a ,  1) (32) 

where K is the lattice constant, and a = A-' for 1 the eigenvalue of matrix (26) bigger than 
unity. For m even the first basis vector is replaced by the path corresponding to the word 
F,, i.e. a path from the origin to eA = f,-le, + f,-zeb. If the atomic surfaces in 0 and 
eA intersect the physical space, so should the atomic surfaces along this path. Therefore 
they extend from -a to 1-a, and IQjl = 1 for all j .  In addition there is the atomic surface 
of length a in the origin corresponding to the points which are the left vertices of intervals 
of length Ka. Sometimes, these atomic surfaces may touch each other in such a way that 
there are atomic surfaces of length greater than unity. This means that the f, - 1 surfaces 
of length 1 and the one with length 1 +a combine to the f , - l  atomic surfaces mentioned in 
the previous section. The latter are of different length (figure 1). Finally the lattice constant 
K is chosen in such a way that the lengths of the intervals become 1 and r. 

K =ant,  + bneh =a, + b,r . (33) 

Then the Fourier iransform has Fourier module 

23t 
K(1+ az) H =  [hl+hzal  h l , h z E Z  

and is given by 

(34) 
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where 

and 

rj = aj, + bjnr .  (37) 

Here the coefficients are found as follows. If A is replaced by w = x l x z . .  . xh ,  the prefixes 
B , X I , X I X ~ ,  ... (i.e. Sj(w) )  contain aj = ISj(w)l, a’s and bj = ISj(w)lb b’s.~The Fourier 
module of the periodic chain with defects contains as submodule the Fourier module of the 
Fibonacci chain. Therefore, the chain with defects can be considered as a (commensurately) 
modulated Fibonacci chain. 

When the lengths of the intervals are not 1 and r ,  but arbitrary 1, and et, the expression 
(31) for the Fourier transform can be generalized. The atomic surfaces are generally not 
parallel to the additional space, but stay mutually parallel to a line x = j3t ( t  E R) such that 

t b  = K(U - j 3 )  . (38) e, = ~ ( 1  +UP) 

The formula (31) then becomes 

5. Concluding remarks 

We have considered the properties of an infinite word created from a quasiperiodic word 
like the infinite Fibonacci one by replacing letters by words. In this way one may obtain 
words with different frequencies and different rank. The frequencies are related by a 
fractional linear @ansformation. The rank may even become infinite if the fractional linear 
transformation is singular. Otherwise the rank remains the same. 

A locally rearranged Fibonacci word (i.e. with the same frequencies) consisting of a 
quasiperiodic sequence of words can be obtained from a chain resulting from a substitution 
rule by replacing the letters~ in the latter by words. In this way the rearranged chain can 
be considered as a modulated Fibonacci chain with discommensurations. The rank remains 
two and the Fibonacci Fourier moduIe is a submodule of that of the modulated chain. In 
other words the modulation is commensurate with respect to the quasiperiodic Fibonacci 
chain. 

For the example of the Fibonacci chain we have shown that a quasiperiodic chain may 
be transformed to a chain that consists of pieces of one of the periodic approximants and 
discommensurations. The transformation occurs via finite phason hopping. 
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